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Abstract

We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice
received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline
(SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as
nonvolatile odors from an intact versus a castratedmale. Furthermore, sexual behavior inmating tests with a sexually experienced
male was significantly reduced in ZnSO4-treated female mice. Vomeronasal function did not seem to be affected by ZnSO4

treatment: nasal application of male urine induced similar levels of Fos protein in the mitral and granule cells of the accessory
olfactory bulb (AOB) of ZnSO4 as well as SAL-treated female mice. Likewise, soybean agglutinin staining, which stains the axons
of vomeronasal neurons projecting to the glomerular layer of the AOB was similar in ZnSO4-treated female mice compared to
SAL-treated female mice. By contrast, a significant reduction of Fos in the main olfactory bulb was observed in ZnSO4-treated
females in comparison to SAL-treated animals, confirming a substantial destruction of theMOE. These results show that theMOE
is primarily involved in the detection and processing of odors that are used to localize and identify the sex and endocrine status of
conspecifics. By contrast, both the main and accessory olfactory systems contribute to female sexual receptivity in female mice.

Key words: main olfactory system, mice, sexual behavior, sex recognition, zinc sulfate

Introduction

Mice use odors to distinguish the sex, social and reproductive

status, and kinship of individuals (Brown, 1979). In rodents,

these odors are detected by two anatomically and functionally

distinct groups of chemosensory receptors, the main olfactory

epithelium (MOE) and the vomeronasal organ (VNO). The
VNO, where the initial detection of odors takes place follow-

ing direct contact with nonvolatile components of various

body odorants such as skin secretions, urine, or scent marks

(Wysocki et al., 1980; Halpern and Martinez-Marcos, 2003;

Luo et al., 2003), detects primarily pheromones or phero-

monal blends which have been shown to play a critical role

in mediating neuroendocrine responses to conspecific odors,

such as pregnancy block (Bruce, 1959) or puberty acceleration
(Whitten, 1959). Many of these vomeronasal effects involve

stereotyped, preprogrammed physiological or hormonal

responses. In mice, several chemicals have been identified that

elicit many of these responses, and these chemicals have been

shown to stimulate vomeronasal receptor neurons at picomo-

lar concentrations (Leinders-Zufall et al., 2000). The physio-

logical and hormonal effects of vomeronasal stimulation are

thought to be mediated by the vomeronasal projections to the

accessory olfactory bulb (AOB) and from there on to limbic

areas of the brain, including the medial and posteromedial

cortical nuclei of the amygdala and the bed nucleus of the stria

terminalis, as well as higher order projections to the hypothal-

amus (medial preoptic area). By contrast, the main olfactory
system is envisioned as a general molecular analyzer that

detects and differentiates among complex chemosignals by

sensory neurons in the MOE. These MOE sensory neurons

project to glomeruli in the main olfactory bulb (MOB).

Different odors activate distinct clusters of glomeruli in the

MOB (Sharp et al., 1975; Xu et al., 2000; Firestein, 2001)

and as a consequence activate different groups of neurons

in the olfactory cortex (Zou et al., 2001). It has been hypoth-
esized that such maps of MOB glomerular activation serve as

the first neural representation leading to the perceptual dis-

crimination of odor quality and intensity (Xu et al., 2000).

In mice, olfaction plays a crucial role in mate recognition

and consequently sexual behavior. Although the case is not

unequivocal, evidence exists, suggesting that the main as op-

posed to the accessory olfactory system plays a more impor-

tant role in mate recognition in female mice. Several studies
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(e.g., Lloyd-Thomas and Keverne, 1982; Keller et al., 2006)

reported that VNO removal had no effect on the preference

of female mice to approach male’s olfactory cues from an

intact as opposed to a castrated male. Conversely, female

mice in which the MOE was destroyed by intranasal appli-
cation of zinc sulfate (ZnSO4) no longer preferred to ap-

proach soiled bedding from intact as opposed to castrated

males (Lloyd-Thomas and Keverne, 1982). However, the

ability to discriminate among complex chemosignals may

not be linked exclusively to the main olfactory system.

Removal of the VNO blocked the ability of congenic male

odors to induce pregnancy block, whereas destruction of

the MOE by either ZnSO4 (Lloyd-Thomas and Keverne,
1982) or by specifically killing MOE neurons in Olfactory

marker protein-nitroreductase (OMP-ntr) mice (Ma et al.,

2002) had no effect on pregnancy block. Likewise, it is

not clear which olfactory system mediates sexual behavior

in female mice. Early works (Thompson and Edwards,

1972; Edwards and Burge, 1973) suggested that the main ol-

factory system may mediate sexual receptivity since ZnSO4

destructions of the MOE attenuated lordosis behavior in
estrogen-progesterone–treated female mice (Edwards and

Burge, 1973). However, we recently showed that VNO re-

moval completely abolished lordosis behavior in female

mice (Keller et al., 2006) which suggests a critical role for

the VNO in sexual behavior.

The present study was thus designed to further analyze the

contribution of the main olfactory system to mate recogni-

tion and sexual behavior in female mice by assessing the
effects of destroying the MOE on the expression of these

behaviors. Thus, female mice treated with ZnSO4 or saline

(SAL) were tested for olfactory investigation of various vol-

atile and nonvolatile odors in a Y-maze and for the display of

lordosis behavior when paired with a sexually experienced

male. We also used the expression of c-fos and soybean ag-

glutinin to confirm that ZnSO4 treatment destroyed only

MOE and not VNO neurons.

Materials and methods

Subjects

Adult (10–12 weeks), sexually naive female mice (n = 32) of

the C57Bl6 inbred strain were obtained from a local breeding
colony at the University of Liège. One week later, all females

were ovariectomized under general anesthesia using a mix-

ture of ketamine (80 mg/kg per mouse) and medetomidine

(Domitor, Pfizer, 1 mg/kg per mouse). Mice received atipa-

mezole (Antisedan, Pfizer, 4 mg/kg per mouse) subcutane-

ously (sc) at the end of the surgery in order to antagonize

medetomidine-induced effects, thereby accelerating their

recovery. During surgery, a Silastic capsule (inner diameter:
1.57 mm; outer diameter: 2.41 mm; length: 5 mm) filled with

17b-estradiol (diluted 1:1 with cholesterol) was implanted

sc in the neck.

Subjects were housed alone in macrolon cages and were

placed in a climate-controlled (light, temperature, and venti-

lation) animal housing unit (Iffa-Credo, L’Arbresle, France)

on a reversed 12:12 h light:dark cycle. The air pressure in the

housing units was higher than in the animal room, thereby
avoiding the inflow of any odors from the room in which

the housing unit was placed. Thus, care was taken that fe-

males were not exposed to any male-derived odors except

when tested. Sawdust served as bedding and was not changed

for at least 48 h before any behavioral test. Food and water

were always available ad libitum.

All the procedures were conducted in accordance with

the guidelines set forth by the National Institutes of Health
Guiding Principles for the Care and Use of Research Ani-

mals and were approved by the Ethical Committee for

Animal Use of the University of Liège.

ZnSO4 treatment

Before the onset of behavioral testing, mice received an in-

tranasal application of 10% ZnSO4 or SAL solution under

general anesthesia. Subjects were placed on their back,

and each naris was injected with 8–10 ll of a sterile 10%
ZnSO4 solution or SAL. Immediately after ZnSO4 irrigation,

the mice were held with their head down for several seconds

to minimize spread of the solution to the oral cavity.

Since regeneration of olfactory receptor cells in the MOE

typically occurs within 7 days after ZnSO4 treatment (see

McBride et al., 2003, for a review), all behavioral tests

were completed within 1 week after intranasal application

of ZnSO4. Peripheral anosmia was first assessed using
habituation/dishabituation tests following ZnSO4 treat-

ment. Undiluted urinary odors from intact males were

used as odor stimulus. Only mice that no longer responded

to the odor stimulus following ZnSO4 treatment were sub-

sequently tested for odor preferences or sexual behavior.

In order to obtain sufficient data, all females were retreated

with ZnSO4 or SAL approximately 1 week following the

first treatment and retested again for odor preferences or
sexual behavior.

Behavioral procedures

Female mice were divided into two groups: one group,

consisting of eight ZnSO4- and eight SAL-treated females,

was tested a total of four times for odor preferences in the
Y-maze, whereas the other group, again consisting of eight

ZnSO4- and eight SAL-treated females, was tested a total

of four times for sexual behavior with an intact male. Be-

havioral tests were always performed on days 2 and 5 fol-

lowing ZnSO4 treatment, and anosmia was reassessed by

habituation/dishabituation tests on day 6 following ZnSO4

treatment. All behavioral tests were performed between

11:00 AM and 4:00 PM, during the dark phase of the
light/dark cycle, and female subjects were injected sc with

500 lg progesterone 2–4 h before each behavioral test to

induce behavioral estrus (Bakker et al., 2002).
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Role of the MOE in discriminating the endocrine status

among males

All olfactory discrimination tests were conducted in an
enclosed, Plexiglas Y-maze (see Bakker et al., 2002, for a full

description of the maze). When subjects were tested for mate

recognition using volatile body odors as odor stimuli, remov-

able opaque Plexiglas doors were placed at the distal end of

each arm to separate the goal boxes from the rest of the

maze. Volatile body odors were derived from anesthetized

stimulus animals placed behind these doors. It should be

noted that the top of each opaque door was perforated to
allow air to flow from the goal boxes into the maze. How-

ever, these holes were placed above the ‘‘eye level’’ so that

subjects could not see the stimulus animals. The level of an-

esthesia was checked regularly and adjusted—if necessary—

between each trial. Also, stimulus animals were placed on

a heating pad to prevent hypothermia. When subjects were

tested for mate recognition using volatile urine odors, 30 ll
of urine was pipetted onto a glass slide and placed behind
the opaque Plexiglas doors. The time that the subject spent

poking his nose in the holes of the door or actively sniffing

the door was recorded. When subjects were tested for

mate recognition using nonvolatile odors, the doors were re-

moved to allow direct access to the odor stimuli which were

placed in the back of each goal box. Soiled bedding was

placed in bowls, whereas the different urine stimuli were

pipetted onto glass slides. The time that the mouse spent
investigating the stimulus in direct physical contact was

recorded.

At the beginning of each test, the subject was placed in the

start box with the door closed to adapt for 1 min. The test

began when the door was removed and the subject could

freely move around in the Y-maze. The time the subject spent

investigating each odor stimulus was recorded with a

stopwatch. Subjects were first tested for 5 min in the Y-maze
with no stimulus animals in the goal boxes to adapt to the

testing apparatus and to determine whether they would

develop any side preferences. This test was conducted before

animals were treated with either ZnSO4 or SAL. The maze

was cleaned with 70% ethanol between trials. All Y-maze

tests lasted 5 min and were separated by at least 3 days.

For each test, cages were taken randomly out of the hous-

ing unit to prevent the same animals always being tested
first or last.

Role of the MOE in detecting volatile odors

To determine whether female mice in which the MOE

was destroyed were still capable of using volatile odors

for mate recognition, ZnSO4 and SAL females were first

tested for their ability to discriminate between volatile odor

stimuli from an intact male versus a castrated male. Thus,
subjects were offered the choice between volatile body odors

(Test 1) followed by volatile urinary odors (Test 2) from

a gonadally intact male versus those from a castrated male.

Role of the MOE in detecting nonvolatile odors

To determine whether female mice treated with ZnSO4 were

capable of using nonvolatile odors for mate recognition,
ZnSO4 and SAL females were tested for their ability to dis-

criminate between various nonvolatile odor stimuli. Thus,

subjects were first offered the choice between soiled bedding

(Test 3) followed by urinary odors (Test 4) from a gonadally

intact male versus those from a castrated male.

Preparation of odor stimuli

Urine was collected from 10 gonadally intact C57Bl6 males,

which were either left gonadally intact or were castrated un-

der general anesthesia at least 2 weeks prior to urine sam-

pling. Urine was collected by holding the mouse by the
scruff of the neck over a funnel, taking care that no fecal

contamination of the urine occurred. Same urine stimulus

samples were pooled and subsequently aliquoted in 500 ll
eppendorf and stored at�80�C until use. For soiled bedding,

groups of gonadally intact males (n = 5) or castrated males

(n = 5) were placed in clean cages containing fresh sawdust.

Bedding was collected 10 h later. All beddings were stored

in plastic freezer bags at �80�C prior to being used in the
experiment.

Role of the MOE in sexual behavior

The sexual receptivity of ZnSO4 (n = 8) and SAL (n = 8)

females was assessed by quantifying the ratio of the number

of lordosis responses to the number of mounts received from

a stimulus male (lordosis quotient). All lordosis tests were

conducted in a Plexiglas aquarium (35 cm long · 25 cm high ·
19 cm wide) whose floor was covered with fresh sawdust.

At the beginning of each test, a sexually experienced male

of the NMRI strain was placed alone in the aquarium and
allowed to adapt for 15 min. Subsequently, an experimental

female was placed in the aquarium, and the lordosis

responses of the female to the mounts of the stimulus male

were recorded. The test lasted until the female had received

20 mounts or 15 min had elapsed.

Determine whether MOE destruction affects anxiety

Since olfactory bulbectomy is commonly used as a model of

depression in rodents (Kelly et al., 1997; Song and Leonard,

2005), we determined whether the behavioral changes ob-
served in the Y-maze or during the sexual interactions with

the male might be due to any changes in subjects’ state of

anxiety. Therefore, ZnSO4 and SAL animals were tested

for their behavior in the elevated plus maze. Female mice

were brought into the test room at least 1 h before the onset

of behavioral testing and remained in the same room

throughout the test. The maze consisted of four arms (each

arm 30 cm long · 15 cm high · 8 cm wide), two open and two
closed arms formed a cross, which were raised 80 cm above

the floor. At the beginning of the test, each mouse was placed

in the center area, and subsequently the time spent in the
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center, open, and closed arms was recorded for 5 min. In ad-

dition, the number of entries into either the open or closed

arms was registered. Behavioral variables were recorded

using a stopwatch. It was considered that the mouse was in

the open (or closed) arm when its four legs were not in the
center area. Females were tested individually under normal

white lighting in a random order. The maze was cleaned with

70% ethanol to eliminate odors after each test.

Assessment of the specificity of the destruction

of the MOE

Habituation/dishabituation tests

To assess whether animals which were treated with ZnSO4

were anosmic, habituation/dishabituation tests were con-

ducted using male volatile urinary odors as odor stimulus

on days 1 and 6 following ZnSO4 treatment. Animals were

tested in their home cages as described by Baum andKeverne
(2002) and Pierman et al. (2006). The stainless steel cage top

containing their food and water was removed and replaced

with a clean top. Odor stimuli were presented by pipetting

30 ll of male urine onto a piece of filter paper that was glued

to a plastic weighing boat (4.3 · 4.3 cm), which was then

placed in the food hopper so that volatile odors from the

stimulus were available at body level. Subjects were unable

to make physical contact with the filter paper using either
their snout or paws. Each test was constituted of a sequence

of three water presentations followed by three odor presen-

tations. The duration of investigation of the odor stimuli was

recorded using a stopwatch; any significant increase of olfac-

tory investigation (dishabituation) when being exposed to

the odorant stimulus was considered as the subject detect-

ing the odor. Only animals that did not show any signifi-

cant dishabituation responses when presented with male
urine were subsequently tested for odor preferences or sexual

behavior.

Histological assessment of the specificity of

MOE destruction

When behavioral testing was completed, the specificity of the

ZnSO4 destruction was assessed by histological procedures.

Thus, we determined whether or not the ZnSO4 infusions

had damaged VNO sensory neurons functioning and thus
disrupted function of the accessory olfactory system. There-

fore, the brains of several ZnSO4- or SAL-treated females

were processed for soybean agglutinin and Fos immunocy-

tochemistry. Thus, ZnSO4 and SAL females were stimulated

by direct application of 30 ll of either male urine (SAL:

n = 4; ZnSO4: n = 6) or water (SAL: n = 4) onto the oronasal

groove. Ninety minutes after stimulation, animals were anes-

thetized with ketamine/domitor and perfused transcardially
with saline followed immediately by 4% cold paraformalde-

hyde in 0.1 M phosphate-buffered saline (PBS) (pH = 7.4).

Brains were removed and postfixed in 4% paraformaldehyde

for 2 h. Then brains were cryoprotected in 30% sucrose/PBS

solution and when sunken, frozen on dry ice and kept at

�80�C. Thirty-micrometers sagital sections of the olfactory

bulbs were cut on a Leica cryostat, and alternate sections

were stained for soybean agglutinin conjugated with horse-
radish peroxidase (SBA–HRP) or Fos. Sections were saved

in antifreeze solution and maintained at �20�C for later

immunocytochemistry.

In the present study, we did not analyze by means of his-

tology, the extent of the MOE lesion following ZnSO4 treat-

ment, since several studies have shown that it is difficult to

predict the level of impairment in olfactory functioning from

the size of the MOE lesion. For instance, Youngentob et al.

(1997) showed that rats which were exposed to methyl bro-

mide gas, which resulted in an almost complete lesion of the

MOE (about 2–5% of the MOE was still present), displayed

almost normal olfactory sensitivity as determined by olfac-

tometry. There results confirmed an earlier study that sug-

gested that mice are able to detect odors even though only

about 5–10% of their olfactory epithelium is intact (Harding

et al., 1978). Finally, both Lu and Slotnick (1998) and Setzer
and Slotnick (1998) reported that rats with a severe reduc-

tion in the afferent connections between the MOE and the

olfactory bulb were still able to detect a wide variety of

odors. Therefore, we believe that a better method to eval-

uate the efficacy of ZnSO4 treatment in destructing the

MOE is to determine whether stimulation with an odor

can induce a functional response in the olfactory bulb since

this structure is situated downstream in the processing of
olfactory information. Thus, the fact that the MOB was

not activated following stimulation with male urine strongly

suggests that the MOE was completely destroyed by the

ZnSO4 treatment.

AOB morphology using soybean agglutinin. SBA–HRP stains
the axons of VNO neurons that project to the glomerular

layer of the AOB and serves as a useful marker for the pres-

ence of intact VNO neurons in mice and rats (Key and

Giorgi, 1986; C.J. Wysocki and L.M. Wysocki, 1995). After

surgical removal of the VNO, the lack of SBA staining in

the AOB provides evidence that the VNO was successfully

removed. In this study, SBA–HRP staining was performed

to ensure that ZnSO4 treatment did not affect the integrity
of the VNO. Sagital sections of the olfactory bulbs were first

incubated in 3% normal goat serum (NGS)/1% H2O2/PBS

for 2 h, followed by washes in 0.1 PBS. Sections were then

incubated in SBA–HRP (15 lg/ml; Sigma, Bornem, Belgium)

for 40 min at room temperature, followed by washes in PBS.

Sections were reacted with nickel-3,3#-diaminobenzidine

(DAB) for 5min and thenmounted onto gelatin-coated slides

and coverslipped using permount.

Functional assessment of theMOB and AOB using the expres-

sion of c-fos. Every fourth section was processed for Fos

immunoreactivity as previously described (Halem et al., 2001;

318 M. Keller et al.

 by guest on O
ctober 3, 2012

http://chem
se.oxfordjournals.org/

D
ow

nloaded from
 

http://chemse.oxfordjournals.org/


Pankevich et al., 2004). All incubations were done at room

temperature and all washes in Tris-buffered saline (TBS) or

PBS. Briefly, sections were preincubated for 3 h in 7.5%

NGS in TBS containing 0.1% Triton X-100 (TBST). Then

sections were incubated overnight with a rabbit polyclonal
anti–c-fos antibody (Santa Cruz SC-52; 1:3000 in TBST/2%

NGS) and then incubated for 1 h in a goat anti-rabbit bio-

tinylated antibody (Dako Cytomation, Glostrup, Denmark;

1:200 in TBST/2% NGS). To eliminate endogenous peroxi-

dase activity, sections were incubated for 30 min in PBS con-

taining H2O2 at a final concentration of 3%. Sections were

then incubated for 45 min in avidin–biotin complex (Vector

Laboratories, Burlingame, CA, USA) and reacted for 5 min
with DAB containing nickel chloride (Vector Laboratories;

prepared according to the manufacturer’s recommendations).

Then sections were washed, mounted onto gelatin-coated sli-

ces, dried, dehydrated through graded alcohol, cleared in

toluene, and coverslipped using permount. Numbers of

Fos-immunoreactive cells were quantified throughout the

mitral and granular cell layers of the AOB and MOB, using

a microscope with a camera lucida attachment.

Statistical analysis

All data were analyzed using repeated measures analysis of
variance (ANOVA). When appropriate, all ANOVAs were

followed by Tukey highest signification difference post hoc

comparisons adapted for repeated measures ANOVA. Only

significant (P < 0.05) effects detected by the ANOVAs are

mentioned in detail in the Results.

Results

Role of the MOE in detecting volatile odors

SAL-infused females showed a strong preference to investi-

gate intact male– over castrated male–derived volatile odor

stimuli (Figure 1A,B). By contrast, ZnSO4-treated females
failed to show an odor preference and showed less olfactory

investigation of any of the odor stimuli, indicating that they

could not detect the odors. This was confirmed by two-way

ANOVA with treatment as independent factor and odor

stimulus as repeated factor showing for both volatile body

and urinary odors a significant effect of ZnSO4 treatment

(body odors: F(1,14) = 12.4, P = 0.003; urinary odors: F(1,14)

= 11.0, P = 0.005), of odor stimulus (body odors: F(1,14) =

7.2, P = 0.017; urinary odors: F(1,14) = 4.8, P = 0.046), and a

significant interaction between these two factors (body odors:

F(1,14)= 7.2,P= 0.017; urinary odors:F(1,14)= 8.6,P= 0.010).

By contrast, the number of visits to each armwas not affected

by ZnSO4 treatment (Table 1), indicating that ZnSO4 females

continued to explore the Y-maze.

Role of the MOE in detecting nonvolatile odors

As observed for volatile odors, SAL-treated females showed

a strong preference to investigate intact male– over castrated

Figure 1 The mean (±SEM) amount of time that female mice spent investigating volatile (A, B) and nonvolatile (C, D) odor stimuli derived from intact male
versus castrated (gdx) male in a Y-maze. Females had received either intranasal irrigationwith zinc sulfate to destroy theMOE (ZnSO4) or saline to serve as control
(SAL), prior to behavioral testing. *P < 0.05, post hoc comparisons between time spent investigating intact male versus castrated male odor by SAL females.
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male–derived nonvolatile urinary odors (Figure 1D). Again,

no odor preference was present in ZnSO4-treated females.

The latter females also spent less time investigating the odor

stimuli, indicating that they probably did not detect the

odors. Two-way ANOVA revealed a significant effect of
the ZnSO4 treatment (F(1,14) = 55.7, P < 0.001), of the odor

stimulus (F(1,14) = 11.6, P = 0.003), and a significant interac-

tion between these two factors (F(1,14) = 10.7, P = 0.007).

By contrast, ZnSO4-treated females continued to visit both

arms of the Y-maze as indicated by the number of arm visits

(Table 1). No statistical differences in arm visits were ob-

served between ZnSO4- and SAL-treated females. When

soiled bedding was used as odor stimulus, differences were
not significant (Figure 1C) (effect of the ZnSO4 treatment:

F(1,14) = 2.8, P = 0.113; effect of the odor stimulus: F(1,14) =

3.11, P = 0.099; and interaction: F(1,14) = 2.8, P = 0.113).

Role of MOE in sexual behavior

SAL females showed high levels of receptivity in all four tests

(Figure 2). By contrast, sexual receptivity was clearly atten-

uated in ZnSO4 females. Two-way ANOVA with treatment

as independent factor and tests as repeated factor on lordosis

quotients showed a significant effect of ZnSO4 treatment

(F(1,14) = 14.6, P = 0.002) and a marginally significant effect

of repeated testing (F(3,42) = 2.7, P = 0.055) but no significant

interaction. Lordosis quotients increased slightly over re-
peated testing in both female groups.

Determine whether MOE destructions affect anxiety

No differences were observed between ZnSO4- and SAL-

treated females in their behavior in the elevated plus maze,
suggesting that the ZnSO4 destructions did not affect their

state of anxiety. This was confirmed by two-way ANOVAs

with treatment as independent factor and arm of the maze

(open or closed) as repeated factor. Only an effect of arm of

the maze was observed (F(2,32) = 13.2, P < 0.001). Post hoc

analysis revealed that all females spent more time in the

closed than in the openarmor in the center of themaze (closed

arm—SAL-treated females: 155 ± 14 s, ZnSO4-treated
females: 194 ± 32 s; center—SAL-treated females: 70 ± 8 s,

ZnSO4-treated females: 29± 7 s; andopen arm—SAL-treated

females: 75 ±13 s, ZnSO4-treated females: 77 ± 33 s).

Histological assessment of the specificity of the

destruction of the MOE

AOB morphology using soybean agglutinin

Both ZnSO4- and SAL-treated females showed SBA–HRP

labeling in every section containing the AOB (Figure 3). No

gross anatomical differences could be observed in the mor-

phology of the glomerular layer of theAOBor in the intensity

of the labeling between ZnSO4- and SAL-treated females.

Functional assessment of the MOB and AOB using the

expression of c-fos

Nasal application of male urine significantly induced Fos

protein in the mitral and granular cell layers of the AOB

of both ZnSO4- and SAL-treated females (Figure 4). By

contrast, only a significant urine-induced Fos was observed

in the MOB of SAL-treated females and not of ZnSO4-

treated females, thereby confirming a complete destruction
of the MOE. One-way ANOVA on the number of Fos-

immunoreactive cells in the AOB revealed a significant effect

of odor exposure in the mitral (F(2,11) = 28.4, P < 0.001) and

Table 1 Number of entries into each arm of the Y-maze when subjects were provided with volatile (no access) or nonvolatile (access) odors from
an intact male and those from a castrated male

SAL ZnSO4

Male Gdx male Total Male Gdx male Total

Anesthetized conspecifics 2.3 ± 0.3 1.7 ± 0.4 4.0 ± 0.5 2.9 ± 0.5 2.6 ± 0.6 5.1 ± 0.8

Urine without access (volatile) 2.7 ± 0.4 3.2 ± 0.8 5.9 ± 1.2 2.9 ± 0.3 2.1 ± 0.3 5.0 ± 0.6

Soiled bedding 2.1 ± 0.3 2.2 ± 0.5 4.3 ± 0.6 1.9 ± 0.5 2.3 ± 0.5 4.1 ± 0.9

Urine with access (nonvolatile) 1.9 ± 0.3 2.5 ± 0.4 4.4 ± 0.5 3.2 ± 0.6 2.5 ± 0.5 5.7 ± 0.7

Data are means ± SEMs.

Figure 2 Mean (±SEM) lordosis quotients (%) of female mice which had
received either intranasal irrigation with zinc sulfate to destroy the MOE
(ZnSO4) or saline to serve as control (SAL). *P < 0.05, significant effect of
ZnSO4 treatment (overall ANOVA).
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granular cell layers (F(2,11)= 17.0,P< 0.01) but no significant

differences between urine-exposed ZnSO4- and SAL-treated

females (Figure 4A). By contrast, one-way ANOVA on the

number of Fos-immunoreactive cells in the MOB revealed

significant differences between urine-exposed ZnSO4- and

SAL-treated females in the mitral cell layer (F(2,11) = 7.6,
P = 0.008) and granular cell layer (F(2,11) = 10.4, P =

0.003). In fact, ZnSO4-treated females exposed to male urine

showed the same level of Fos activation as SAL-treated

females exposed to water.

Discussion

Role of the MOE in discriminating the endocrine status

among males

The present results clearly show that destruction of the

MOE by applying ZnSO4 rendered female mice anosmic

and that animals remained anosmic for at least 6 days fol-

lowing ZnSO4 application. ZnSO4-treated female mice did

not respond to volatile male urinary odors in habituation/

dishabituation tests. Furthermore, when presented with var-
ious volatile odor stimuli in the Y-maze, they spent less time

investigating volatile odors derived from either an intact or

castrated male compared to SAL-infused controls. These

lower levels of olfactory investigation were not due to the

fact that the ZnSO4-treated females did not explore the

Y-maze; indeed, no differences were observed in the number

of visits to each arm. In addition, ZnSO4-treated females

did not show any odor preferences, whereas SAL controls
clearly preferred to investigate intact male odors. However,

the absence of an odor preference does not provide ultimate

proof that the ZnSO4-treated females are anosmic since con-

trol females also showed a low level of investigation toward

gdx male cues. However, it shows at least that these females

failed to detect testosterone-dependent male chemosignals.

In this respect, it is interesting to note that Lin et al. (2005)

recently showed that adding the volatile compound (methyl-
thio)methanethiol (MTMT) to urine from castrated males

restored its ability to attract female mice. In addition, it

was successful in activating mitral cells in the MOB. This

compound is normally found in male mouse urine, whereas

it is almost undetectable in female urine, suggesting that

its synthesis may depend on testosterone. Thus, females

may use MTMT to determine the endocrine status of male

conspecifics.
Remarkably, when subjects were given direct access to the

urinary odor stimuli, ZnSO4-treated females still showed

a reduced olfactory investigation in addition to no odor pre-

ferences. Again, these lower levels of olfactory investigation

were clearlynotdue to the fact that theZnSO4-treated females

did not visit both arms containing the odor stimuli. We were

concerned that intranasal irrigation with ZnSO4 leaked into

the VNO, thereby partially lesioning it. Therefore, we used
soybean agglutinin as well as Fos immunocytochemistry to

assess VNO functioning in ZnSO4-treated females. Staining

of the AOB using soybean agglutinin did not reveal any dif-

ferences between ZnSO4 and SAL-treated females. ZnSO4-

treated females, like SAL-treated females, showed a signi-

ficant induction of c-fos, as indicated by the presence of

Fos-immunoreactive cells, in both themitral andgranular cell

layers of the AOB following nasal application of male urine,
suggesting that VNO functioning was not affected by the

ZnSO4 treatment. By contrast, no significant Fos induction

was observed in the MOB of ZnSO4-treated females after

exposure to male urine confirming a complete destruction

of MOE functioning in these females. Thus, our results con-

firm the long held view that the main olfactory system is used

to localize and identify the sex and endocrine status of con-

specifics on the basis of their volatile odors (Powers et al.,
1979;O’Connell andMeredith, 1984). In addition, our results

confirm previous observations that mice use predominantly

volatile odors for discrimination of conspecifics on the basis

of their sex or endocrine status (Bakker et al., 2002; Pankevich

et al., 2004; Keller et al., 2006). Thus, when provided with di-

rect access to soiled bedding or urine samples, ZnSO4-treated

females do not detect the volatile odors released from these

odor sources and subsequently arenot attracted to investigate
them further. This is in line with early observations in OMP-

ntr mice, where targeted destruction of the MOE made it

impossible for female mice to locate male urine spots placed

in their home cage (Ma et al., 2002).

Role of the MOE in sexual behavior

Destruction of the MOE with ZnSO4 reduced lordosis quo-
tients by about 50%. These results confirm previous findings

by Edwards and Burge (1973) who showed that peripheral

anosmia induced by intranasal application of ZnSO4 solution

attenuated lordosis in sexually experienced and hormone-

primed female mice, although not to the same extent as fol-

lowing bulbectomy (Thompson and Edwards, 1972). This

reduction in sexual receptivity may be directly related to the

absence of any main olfactory inputs since sexual receptivity
is determined by inputs froma range of different external, sen-

sory as well as internal, hormonal signals. Thus, deprivation

of one sensory input (in this case from the main olfactory

Figure 3 Representative photomicrographs showing sagital sections
stained with SBA–HRP of the AOB of female mice which had either under-
gone ZnSO4 or SAL treatment. The presence of SBA–HRP staining in the glo-
merular layer of both groups of animals was taken as evidence of intact VNO
function in ZnSO4-treated females. Gl, glomerular cell layer; Mi, mitral cell
layer; Gr, granular cell layer. Scale bar: 100 lm.
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system) may induce less activation of the brain centers regu-

lating lordosis and as a consequence impairs lordosis behav-

ior. Alternatively, this reduction in lordosis behavior may be

indirectly due to a deficit in VNO signaling. We have previ-

ously shown that VNO-lesioned females fail to show lordosis

behavior when paired with a sexually active male, suggesting

that nonvolatile male odors are necessary to induce female

sexual receptivity in this species (Keller et al., 2006). Thus,

if the main olfactory system is not functional, the VNO never

has a chance to be activated because the animal never locates

Figure 4 (A) Mean (±SEM) numbers of Fos-immunoreactive cells in the mitral and granular cell layers of both the MOB and AOB. Female mice which were
either treated with zinc sulfate to destroy theMOE (ZnSO4)or SALwere either exposed tomale urine or water placed directly on the nose. *P< 0.05, significantly
different between SAL females exposed to water and SAL and ZnSO4 females exposed to male urine. #P < 0.05, significantly different between SAL females
exposed to urine and SAL females exposed to water or ZnSO4 females exposed to male urine. (B) Representative sagital sections showing Fos-immunoreactive
cells in the mitral and granular cell layers of the MOB and AOB. Female mice in which the MOE was destroyed by intranasal application of ZnSO4 did not
show a significant induction of c-fos in both cell layers of the MOB after exposure to male urine. By contrast, they showed a similar Fos induction in both cell
layers of the AOB. Scale bar: 100 lm.
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the nonvolatile odor stimuli needed to activate it. To test this

possibility, we will attempt in future experiments to counter-

act the deficits in lordosis behavior in ZnSO4-treated females

by pipetting male urine or lacrimal gland secretions directly

onto their noses.
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